Performance Analysis in Ceramic Porcelain Production with the Use of Alternative Raw Materials and Composition Improvement
Keywords:
Ceramic Porcelain, Alternative Raw Materials,, Composition Improvement, Thermal Expansion, Crack Resistance in AutoclaveAbstract
This study investigates the use of feldspar derivatives from different regions and alternative raw materials used in ceramic porcelain production. Characterization tests performed include mineralogical analyses, XRF, XRD, dilatometer, heat microscopy, grain size distribution, water absorption and autoclave crack resistance analyses. The findings evaluate the sintering behavior, chemical composition and thermal expansion properties, identifying weak links in the manufacturing processes. In particular, mismatches in alkali oxide ratio, differences in thermal expansion and problems in melting behavior affect crack resistance. As a result, alternative raw material usage and composition improvement are suggested and various recommendations are presented to solve the problems in production.
References
Akpinar, S., Evcin, A., & Ozdemir, Y. (2017). Effect of calcined colemanite additions on properties of hard porcelain body. Ceramics International, 43(11), 8364-8371.
Altimari, F., Andreola, F., Benassi, P. P., Lancellotti, I., & Barbieri, L. (2023). Pumice and lapillus scraps: New national environmental-friendly chance for the production of ceramic tiles. Ceramics International, 49(23), 38743-38753.
Alwi Kutty, N. A. (2020). Development of the porcelain tiles by the partial substitution of feldspar with fly ash (Doctoral dissertation, Universiti Tun Hussein Onn Malaysia).
Amorós, J. L., Blasco, E., Feliu, C., & Moreno, A. (2021). Effect of particle size distribution on the evolution of porous, microstructural, and dimensional characteristics during sinter-crystallisation of a glass-ceramic glaze. Journal of Non-Crystalline Solids, 572, 121093.
Aurélio, I. L., Fraga, S., Dorneles, L. S., Bottino, M. A., & May, L. G. (2015). Extended glaze firing improves flexural strength of a glass ceramic. Dental Materials, 31(12), e316-e324.
Bahtli T., Erdem Y. (2022). The use of foundry waste sand from investment casting in the production of porcelain tiles, Ceram. Int., 48, Part A, 27967-27972.
Binhussain, M. A., Marangoni, M., Bernardo, E., & Colombo, P. (2014). Sintered and glazed glass-ceramics from natural and waste raw materials. Ceramics International, 40(2), 3543-3551.
Brosh, E., Pelton, A. D., & Decterov, S. A. (2012). A model to calculate the viscosity of silicate melts. International Journal of Materials Research, 103(5), 537-550.
Capatína, C., Simonescu, C. M., & Florea, G. (2012). Glazes From Wastes Obtaining. Metalurgia International, 17(1), 16.
Celik, H. (2015). Recycling of boron waste to develop ceramic wall tile in Turkey. Transactions of the Indian Ceramic Society, 74(2), 108-116.
Dondi, M., Biasini, V., Guarini, G., Raimondo, M., Argnani, A., Di Primio, S., 2002, “The influence of magnesium silicates on technological behaviour of porcelain stoneware tiles”, Key Engineering Materials, Vol. 206, 1795-1798.
Engels, M., & Piribauer, C. (2022). 10 Technical ceramics and hard materials. From Magnetic to Bioactive Materials, 165.
Erzincan, A., Yıldız, N., Erken, E., Parlak, D., Akbak, S., Evren, B., Ebeoğlu, S., Arslan, M., & Mercin, L. (2021). Anadolu kilim motiflerinin sofra seramiklerine yansıması. Medeniyet Sanat- İMÜ Sanat Tasarım ve Mimarlık Fakültesi Dergisi, 7(1),127–162.https://doi.org/10.46641/ medeniyetsanat.913171
García-Ten, J., Dondi, M., Vítor, J., Lisboa, M. V., Cabedo, M. V., Pérez-Villarejo, L., ... & Zanelli, C. (2024). Critical raw materials in the global high-throughput ceramic industry. Sustainable Materials and Technologies, 39, e00832.
Göl, F., Yılmaz, A., Kaçar, E., Şimşek, S., Sarıtaş, Z. G., Türe, C., Arslan, M., Bekmezci, M., Burhan, H., & Şen, F. (2021). Reuse of glass waste in the manufacture of ceramic tableware glazes. Ceramics International, 47(15), 21061–21068.[CrossRef]
Huang, H., Yu, J., Liu, F., & Zeng, H. (2021, December). Preparation of A High-Performance Frit Glaze Using High-Potassium Feldspar. In IOP Conference Series: Earth and Environmental Science (Vol. 943, No. 1, p. 012018). IOP Publishing.
Karaogul, E. (2019). Effects of Asphodel Tuber and Dolomite on the Properties of Bio-hybrid Films Processed by a Twin Screw Extruder. Bioresources, 14(2), 4473-4488.
Karaoğul, E., & Alma, M. H. (2019). Effects of Eremurus Tuber and Dolomite Filler on Several Properties of Poly(Vinylalcohol) Bio-Films. Fresenius Environmental Bulletin, 28(10), 7108-7118.
Karataş, C., & Şimşek, V. (2022). Corrosion resistance of commercial glazes of floor tiles. Materials Testing, 64(12), 1860-1870.
Kim, J. A. (2006). Composite Porcelain. Characterisation of Material Properties and Workability from a Ceramic Art and Design Perspective. School of Design and Crafts; Högskolan för design och konsthantverk (HDK).
Köseoğlu, K. (2017). Effect of ulexite concentrator waste on the physical and mechanical properties and sintering behaviour of floor tile bodies. Clay Minerals, 52(1), 97-105.
Kurian, M., & Thankachan, S. (2023). Introduction: Ceramics classification and applications. In Ceramic Catalysts (pp. 1-17). Elsevier.
La Torre, V., Rambaldi, E., Masi, G., Nici, S., Ghezzi, D., Cappelletti, M., & Bignozzi, M. C. (2021). Validation of antibacterial systems for sustainable ceramic tiles. Coatings, 11(11), 1409.
Leonelli C., Bondioli F., Veronesi P., Romagnoli M., Manfredini T., Pellacani G.C., Cannillo V. (2001). Enhancing the mechanical properties of porcelain stoneware tiles: a microstructural approach, J. Eur. Ceram. Soc. 21, 785-793.
Nam, M. G., & Park, M. G. (2018). Changes in the flexural strength of translucent zirconia due to glazing and low-temperature degradation. The Journal of Prosthetic Dentistry, 120(6), 969-e1.
Öksüzer, N. (2023). The effect of calcination on alkali-activated lightweight geopolymers produced with volcanic tuffs. Journal of the Australian Ceramic Society, 59(4), 1053-1063.
Otitoju, T. A., Okoye, P. U., Chen, G., Li, Y., Okoye, M. O., & Li, S. (2020). Advanced ceramic components: Materials, fabrication, and applications. Journal of industrial and engineering chemistry, 85, 34-65.
Öztürk Z.B., Can A. (2023). The use of micronized pumice in the production of ceramic sanitaryware glazes with sustainable industrial characteristics, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1967-1977 [22] Fuertes V., Reinosa J.J., Fernández J.F., Enríquez E. (2022). Engineered feldspar-based ceramics: A review of their potential in ceramic industry, J.Eur. Ceram. Soc., 42, 307-326.
Öztürk, Ç., Akpınar, S., & Tarhan, M. (2021). Investigation of the usability of Sille stone as additive in floor tiles. Journal of the Australian Ceramic Society, 57, 567-577.
Reinosa, J. J., Enríquez, E., Fuertes, V., Liu, S., Menéndez, J., & Fernández, J. F. (2022). The challenge of antimicrobial glazed ceramic surfaces. Ceramics International, 48(6), 7393-7404.
Revuelta, M.B. (2021). Ceramic Products. Construction Materials: Geology, Production and Applications, 339-374.
Santos T., Hennetier L., Costa V.A.F., Costa L.C. (2022). Microwave versus conventional porcelain firing: Colour analysis, Mater. Chem. Phys., 275, 125265.
Sariisik, A., Sariisik, G., & Şentürk, A. (2011). Applications of glaze and decor on dimensioned andesites used in construction sector. Construction and Building Materials, 25(9), 3694-3702.
Sarıışık, G., Sarıışık, A., & Gökay, M. K. (2013). Investigation the glazability of dimension andesites with glaze coating materials containing boron minerals in construction sector. Materials and structures, 46(9), 1507-1517.
Taallah, H., Chorfa, A., Tamayo, A., Rubio, F., & Rubio, J. (2021). Investigating the effect of WO3 on the crystallization behavior of SiO2–B2O3–Al2O3–Na2O–CaO–ZnO high VIS-NIR reflecting glazes. Ceramics International, 47(19), 26789-26799.
Tarhan M., Tarhan B. (2019). Sırlı porselen karo üretimi için alternatif hammadde olarak Eşme/Uşak feldspatı, AKÜ FEMÜBİD, 19 (025702), 5429-438.
TC. Kalkınma Bakanlığı, Onuncu Kalkınma Planı 2014-2018, Seramik Çalışma Grubu Raporu, Ankara, 2015, https://www.sbb.gov.tr/wpcontent/uploads/2022/08/Onuncu-Kalkinma-Plani-Seramik-Calisma-Grubu-Raporu.pdf, Güncelleme tarihi 08, 2022.
TC. Sanayi ve Teknoloji Bakanlığı Seramik Sektörü Raporu, Sanayi Genel Müdürlüğü, Sektörel Raporlar ve Analizler Serisi. https://www.sanayi.gov.tr/assets/pdf/planprogram/SeramikSektorRaporu2020.pdf, Erişim tarihi 09, 2022.
Tomalino, M. U. (2021). Mineralogy and Properties of Raw Materials and Crystalline Phases of Ceramics and Glass–Ceramics. Ceramics, Glass and Glass-Ceramics: From Early Manufacturing Steps Towards Modern Frontiers, 47-73.
Turkmen, O., Kucuk, A., & Akpinar, S. (2015). Effect of wollastonite addition on sintering of hard porcelain. Ceramics International, 41(4), 5505-5512.
Ustunel, G., Yenikaya, C., Bekmezci, M., & Sen, F. (2021). Prevention of mat glazed acid permeability used in monoporosa wall ceramics. Environmental Technology & Innovation, 23, 101628.
Wang, S., Gainey, L., Mackinnon, I. D., Allen, C., Gu, Y., & Xi, Y. (2023). Thermal behaviors of clay minerals as key components and additives for fired brick properties: A review. Journal of Building Engineering, 66, 105802.
Wong-Ng W. (2019). Ceramic Materials, International Tables for Crystallography, John Wiley & Sons, New York, A.B.D.
Xu, L., Liu, Y., Chen, M., Wang, N., Chen, H., & Liu, L. (2023). Production of green, low-cost and high-performance anorthite-based ceramics from reduced copper slag. Construction and Building Materials, 375, 130982.
Xu, X., Li, A., Wu, J., Yin, Y., Ma, S., & Yuan, J. (2023). Effect of zirconia addition amount in glaze on mechanical properties of porcelain slabs. Ceramics International, 49(12), 20080-20087.
Zanelli, C., Conte, S., Molinari, C., Soldati, R., & Dondi, M. (2021). Waste recycling in ceramic tiles: A technological outlook. Resources, Conservation and Recycling, 168, 105289.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Current Naturalscience and Advanced Phytochemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.