Metabolomics and Proteomics in Foods

Authors

Keywords:

Omic, metabolomics, proteomics, mass spectrometry, food quality

Abstract

The discovery of the human gene sequence by analysis has started a new era called omics technology. Ohmic technologies; Nutrition offers a future in the study of the complex relationship between food and metabolism. In recent years, a wide variety of omics sub-disciplines have emerged, and each branch of science has its own specific applications. Allowing new areas of research to emerge, omics technologies include mass spectrometry and many other techniques that allow high throughput analysis.

Metabolomics and proteomics are omics technologies; It has unparalleled advantages in understanding physiological and pathological activities in food science. Metabolomics and proteomic analyses in the food industry; It is used to determine food quality, product production, traceability of food, how the processes during storage affect the structure of foods, and biomarkers that cause food allergens and the relationship of biomarkers with nutrition. Studies in this field allow detailed examination of the changes in foods thanks to the developments in the field of chromatography.  In this study, the areas of metabolomics and proteomics technologies used for foodomics and their future status are discussed.

References

Aires, J., Anglade, P., Baraige, F., Zagorec, M., Champomier-Verge, M. C., & Butel, M. J. (2010). Proteomic Comparison of The Cytosolic Proteins of Three Bifidobacterium Longum Human Isolates and Bifidobacterium Longum NCC2705. BMC Microbiol, 10: 29-36.

Akagawa, M., Handoyo, U., Ishii T., Kumazawa, S., Morita, N. & Suyama, K. (2007). Proteomic Analysis of Wheat Flour Allergens. Journal of Agricultural and Food Chemistry, 55(17): 6863-6870.

Almeida C., Duarte I.F., Barros A., Rodrigues J., Spraul M. & Gil A.M. (2006). Composition of Beer by 1H NMR Spectroscopy: Effects of Brewing Site and Date of Production. J Agr Food Chem 54: 700–706.

Alothman, M., Lusk, K. A., Silocock, P. & Bremer, P. J. (2017). Comparing PTR-MS Profile of Milk Inoculated with Pure or Mixed Cultures of Spoilage Bacteria. Food Microbiology, 64: 155-63.

Ansari, P., Stoppacher, N. & Baumgartner, S. (2012). Marker Peptide Selection for The Determination of Hazelnut By LC-MS/MS and Occurrence in Other Nuts. Anal. Bioanal. Chem., 402(8): 2607–2615.

Aru, V., Khakimov, B., Sorensen, K. M. & Engelsen, S. B. (2018). The Foodome of Bivalve Molluscs: From Hedonic Eating to Healthy Diet. Journal of Food Composition and Analysis, 69: 13 – 9.

Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., And Kuster, B., 2007. Quantitative Mass Spectrometry in Proteomics: A Critical Review. Anal Bioanal Chem, 389: 1017-1031.

Başaran, E., Aras, S. & Cansaran-Duman, D. (2010). General Outlook and Applications of Genomics, Proteomics and Metabolomics. Turkish Bulletin of Hygiene And Experimental Biology. Cx; 67(2): 85-96.

Bayram, M. & Gökırmaklı, Ç. (2018). OMICS: A Journal of Integrative Biology, 177-183.

Boo, C. C., Parker, C. H., And Jackson, L. S. (2018). A Targeted LC-MS/MS Method for The Simultaneous Detection and Quantitation of Egg, Milk, and Peanut Allergens in Sugar Cookies. Journal of AOAC International, 101(1): 108–117.

Bromilow, S., Gethings, L. A., Buckley, M., Bromley, M., Shewry, P. R., Langridge, J. I. & Clare Mills, E. N. (2017). A Curated Gluten Protein Sequence Database to Support Development of Proteomics Methods for Determination of Gluten in Gluten-Free Foods. J. Proteome., 163: 67–75.

Budak, Ş. & Dönmez, S. (2012). New Omics Technologies in Food Science, Food, 37 (3): 173-179.

Calvano, C. D., Monopoli, A., Loizzo, P., Faccia, M. & Zambonin, C. (2013). Proteomic Approach Based on MALDI – TOF MS To Detect Powdered Milk in Fresh Cow's Milk. Journal of Agricultural and Food Chemistry, 61(8): 1609-1617.

Capriotti, A. L., Caruso, G., Cavaliere, C., Foglia, P., Samperi, R. & Laganà, A. (2012). Multiclass Mycotoxin Analysis in Food, Environmental and Biological Matrices with Chromatography/Mass Spectrometry. Mass Spectrometry Reviews, 31(4): 466-503.

Carbonaro, M. (2008). Proteomics: Present and Future in Food Quality Evaluation. Trend Food Sci Tech, 15: 209-216.

Castro – Puyana, M., Perez – Miguez, R., Montero, L. & Herrero, M. (2017). Reprint of: Application of Mass Spectrometry – Based – Metabolomics Approaches for Food Safety, Quality and Traceability. TrAC Trends in Analytical Chemistry, 96: 62-78.

Cevallos, J. & Rodrick, G. (2009). Metabolomic Analysis in Food Science: A Review. Trends in Food Science & Technology, 20 (11): 557-566.

Chang,Y., Zhao, C., Zhu, Z., Wu, Z., Zhou, J., Zhao, Y., Lu, X. & Xu, G. (2012). Metabolic Profiling Based on Lc7mms To Evaluate Unintended Effects Of Transgenic Rice With Cry1ac and Sck Genes. Plant Molecular Biology, 78(4 – 5): 477-87.

Chao, E., & Krewski, D. (2008). A Risk – Based Classification Scheme for Genetically Modified Foods II: Graded Testing. Regulatory Toxicology and Pharmacology: RTP, 52(3): 223-34.

Chen, J., Li, K., Le, X. C. & Zhu, L. (2018). Metabolomic Analysis of Two Rice (Oryza Sativa) Varieties Exposed To 2,2',4,4'-Tetrabromodiphenylether. Enviromental Pollution (barking, Essex: 1987), 237: 308-17.

Chen, L., Zhao X., Wu, J., Liu, Q., Pang, X. & Yang (2020). Metabolic Characterization of Eight Escherichia Coli Strains and Acidic Responses of Selected Strains Revelead By NMR Spectroscopy. Food Microbiology 88: 103399.

Christopher J. & Haselssen J.N. (2008). Metabolic Profiling as A Tool For Understanding Mechanisms of Toxicity. Toxicol Pathol. 36 (1): 140-147.

Coşkun, T. (2007). Nutritional Genomics. Journal of Pediatrics, 50; 47-66.

Costa, A. I. A. & Jongen, W. M. F. (2006). New Insights into Consumer-Led Food Product Development. Trends Food Sci Technol, 17: 457-465.

Cristea, I. M., Gaskell, S. J. & Whetton, A. D. (2004). 'Proteomics Techniques and Their Application to Hematology ', Blood, 103 (10): 3624-3634.

Cubero–Leon, E., Penalver, R. & Maquet, A. (2014). Review on Metabolomics for Food Authentication, Food Research International, 60: 95-107.

D'Alessandro, A. & Zolla, L. (2012). We Are What We Eat: Food Safety and Proteomics, J. Proteome Res., 11: 26–36.

Davies, H. (2010). A Role For ''Omics'' Technologies in Food Safety Assessment. Food Control, 21(12): 1601-1610.

DeBruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B. & Vandamme, P. (2011). Bacterial Species Identification from Maldi-Tof Mass Spectra Through Data Analysis and Machine Learning. Syst Appl Microbiol, 34: 20-29.

Donna, D., L., Ronci, M., Sacchetta, P., Di Ilio, C., Biolatti, B. & Federici, G. (2009). A Food Safety Control Low Mass- -Range Proteomics Platform for The Detection of Illicit Treatments In Veal Calves By Maldi-Tof-Ms Serum Profiling, Biotechnol. J., 4: 1596–1609.

Elaine, T. M., Cindy, D. & Milner J. (2006). Nutrigenomics, Proteomics, Metabolomics. Pract Dietetics, 106(3), 403-413.

Forne, I., Abian, J. & Cerda, J. (2010). Fish Proteome Analysis: Model Organisms and Non-Sequenced Species. Proteomics, 10: 858-872.

Gallardo, J. M., Mónica, C. & Ignacio, O. (2013). "Proteomics in Food Science." Foodomics: Advanced Mass Spectrometry in Modern Food Science and Nutrition; Cifuentes, A., Ed: 125-165.

Gao, C. (2018). The Future of Crispr Technologies In Agriculture . Nature Reviews Molecular Cell Biology, 19(5): 275-6.

Garcia – Canas, V., Simo, C., Castro – Puyana, M. & Cifuentes, A. (2014). Recent Advances in The Application of Capillary Electromigration Methods for Food Analysis and Foodomics. Electrophoresis, 35(1): 147-69.

Garcia – Canas, V., Simo, C., Herrero, M., Inbanez, E. & Cifuentes, A. (2012). Present and Future Changelles in Food Analysis: Foodomics. Analytical Chemistry, 84: 10150-159.

Gaulitz, J. M., Aceves, C. M., Aksenov, A. A., Aleti, G., Almaliti, J., Bouslimani, A., And Brown, E. A. (2018). Untargeted Mass Spectrometry – Based Metabolomics, Tracks, Molecular Changes in Raw and Processed Foods and Beverages. Biorxiv: 347716.

Ghosh, D. & Poisson, L. M. (2009). "Omics" Data and Levels of Evidence for Biomarker Discovery. Genomics 93(1): 13-16.

Gibney, M. J., Walsh, M., Brennan, L., Roche, H. M., German, B. & Ommen, B. (2005). Metabolomics in Human Nutrition: Opportunities and Challenges. Am J Clin Nutr 82: 497-503.

Girolamo, F., Masotti, A., Salvatori, G., Scapaticci, M., Muraca M. & Putignani, G. (2014). A Sensitive and Effective Proteomic Approach to Identiy She-Donkey's and Goat's Milk Adulterations by MALDI-TOF/MS Fingerprinting. Int J Mol Sci, 15(8): 13697-719.

Goodacre, R. (2005). Metabolomics-The Way Forward. Metabolomics, 1: 1-2.

Green, M. J., Leach, K. A., Breen, J. E., Green, L. E. & Bradley, A. J. (2007). National Intervention Study of Mastitis Control in Dairy Herds in England and Wales. Vet Rec, 160: 287-93.

Hamad, H. O., Alma, M. H., Gulcin, I., Yilmaz, M. A., & Karaogul, E. (2017). Evaluation of Phenolic Contents and Bioactivity of Root and Nutgall Extracts from Iraqian Quercus infectoria Olivier. Records of Natural Products, 11(2), 205-210.

Han, J. Z. & Wang, Y. B. (2008). Proteomics: Present and Future in Food Science and Technology. Food Sci Technol Int, 19: 26-30.

Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., Praet, N., Bellinger, D. C. & Gargouri, N. (2015). World Health Organization Global Estimates and Regional Comparisons of The Burden of Foodborne Disease in 2010. Plos Medicine 12 (12): E1001923.

Henzel, W. J., Watanabe, C., & Stults, J. T. (2003). Protein Identification: The Origins of Peptide Mass Fingerprinting. Journal of The American Society for Mass Spectrometry, 14(9): 931-942.

Heuberger A.L., Lewis M.R., Chen M.H., Bridge M.A., Leach J.E. & Ryan E.P., (2010). Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds Of Cooked Rice. Plos One, 5: 2915.

Hogarth, C., Fitzpatrick, L., Nolan, A., Genc, F. & Pitt, A. (2004). Eckersall P., Differential Protein Composition of Bovine Whey: A Comparison of Whey From Healthy Animals and From Those with Clinical Mastitis. Proteomics, 4(7): 2094-2100.

Hörmann, S., Scheyhing, C., Behr, J., Pavlovic, M., Ehrmann, M. & Vogel, R. F. (2006). Comparative Proteome Approach to Characterize The High-Pressure Stress Response of Lactobacillus Sanfranciscensis Dsm 20451t . Proteomics, 6: 1878-1885.

Hou, Y., Kamal, G. M., Wang, J., Liu, H., Zhang, G., Hu, Z., Anwar, F. & Du, H. (2017). 1H – NMR – Based Metabolomics for Discrimination of Rice from Different Geographical Origins of China. Journal of Cereal Science, 76: 243-52.

Hu, F., Furihata, K., Kato, Y. & Tanokura, M. (2007). Nondestructive Quantification of Organic Compounds in Whole Milk Without Pretreatment by Two dimensional NMR Spectroscopy. J Agr Food Chem 55: 4307-4311.

Issaq, H. J. (2001). The Role of Separation Science in Proteomics Research. Electrophoresis, 22(17): 3629-3638.

Izquierdo, E., Horvatovich, P., Marchioni, E., Aoude-Werner, D., Sanz, Y. & Ennahar, S. (2009). 2-De and Ms Analysis of Key Proteins in The Adhesion of Lactobacillus Plantarum, A First Step Toward Early Selection of Probiotics Based on Bacterial Biomarkers. Electrophoresis, 30: 949-956.

Jadhav, S. R. (2019). Identification of Putative Biomarkers Specific to Foodborne Pathogens Using Metabolomics. In Foodborne Bacterial Pathogens, ed, A.Bridier, 149-64.

Jadhav, S., Sevior, D., Bhave, M. & Palombo, E. A. (2014). Detection of Listeria Monocytogenes from Selective Enrichment Broth Using Maldi–Tof Mass Spectrometry. Journal of Proteomics, 97: 100-106.

Kahraman, H. & Bozkır, S. (2020). Proteomics Technology and Its Uses in Food Science. Academic Research in The Field of Animal Husbandry, 47-75.

Karaogul, E. (2019). Effects of Asphodel Tuber and Dolomite on the Properties of Bio-hybrid Films Processed by a Twin Screw Extruder. Bioresources, 14(2), 4473-4488.

Karaoğul, E., & Alma, M. H. (2019). Effects of Eremurus Tuber and Dolomite Filler on Several Properties of Poly(Vinylalcohol) Bio-Films. Fresenius Environmental Bulletin, 28(10), 7108-7118.

Karaogul, E., Kirecci, E., & Alma, M. H. (2016). DETERMINATION OF PHENOLIC COMPOUNDS FROM TURKISH KERMES OAK (Quercus coccifera L.) ROOTS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY; ITS ANTIMICROBIAL ACTIVITIES. FEB-FRESENIUS ENVIRONMENTAL BULLETIN, 2356.

Kathuria, D., Thakur, S. & Sindh, N. (2024). Advances of metabolomic in exploring phenolic compounds diversity in cereal and their health implications. International Journal of Food Science and Technology, Early View, Online Version, March 2024 https://doi.org/10.1111/ijfs.17056

Kaufmann, A. (2014). Combining Uhplc and High - Resolution Ms: A Viable Approach Fort He Analysis of Complex Samples? TrAC Trends in Analytical Chemistry, 63: 113- 28.

Kendall, H., Naughton, P., Kuznesof, S., Raley, M., Dean, M., Clark, B., Stolz, H., Home, R., Chan, M. Y. & Zhong, Q. (2018). Food Fraud and The Perceived Integrity of European Food Imports Into China. PLoS One, 13(5): e0195817.

Kim, Y., Nandakumar, M. P. & Marten, M. R. (2007). Proteomics of Filamentous Fungi. Trends Biotechnol 25(9): 395-400.

Kiran, F. & Osmanağaoğlu, Ö. (2013). Pretoemic Studies in Lactic Acid Bacteria, Food, 38(1): 55-62.

Koyuncu, İ., Gönel, A., Temiz, E., Karaoğul, E., & Uyar, Z. (2021). Pistachio Green Hull Extract Induces Apoptosis through Multiple Signaling Pathways by Causing Oxidative Stress on Colon Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry- Anti-Cancer Agents), 21(6), 725-737.

Levin, R. E. (2009). The Use of Molecular Methods for Detecting and Discriminating Salmonella Associated with Foods—A Review. Food Biotechnology, 23(4): 313-367.

Lindon, J. C., Holmes, E., Bollard, M. E., Stanley, E. G. And Nicholson, J. K. (2004). Metabonomics Technologies and Their Applications Jadhav S. R., Liuphysiological Monitoring, Drug Safety Assessment and Disease Diagnosis. Biomarkers 9: 1-31.

Liu, X. D., Jayasena, D. D., Jung, Y., Jung, S., Kang, B. S., Heo, K. N., Lee, J. H. & Jo, C. (2012). Differential Proteome Analysis of Breast And Thigh Muscles Between Korean Native Chickens and Commercial Broilers. Asian-Australas. J. Anim. Sci., 25: 895.

Ma, X., Ge, Y., Zhang, J., Huang, W., Han, J., Chen, Y., Li, H. & Sun, J. (2020). Comprehensive Quantification of Sesame Allergens in Processed Food Using Liquid Chromatography-Tandem Mass Spectrometry. Food Control, 107: 106744.

Manso, M. A., Le ́onil, J., Jan, G. & Gagnaire, V. (2005). Application of Proteomics to The Characterisation of Milk and Dairy Products. Int Dairy J, 15: 845-855.

Marko-Varga, G. (2004). Proteomics Principles and Challenges. Pure and Applied Chemistry, 829-837.

Mashego, M. R., Rumbold, K. C., Marjan De Mey, Vandamme, E., Soetaert, W., & Heijnen, J., 2007. Microbial Metabolomics: Past, Present and Future Methodologies. Biotechnol Lett, 29: 1-16.

Moco, S., Bino, R. J., Vorst, O., Verhoeven H. A., Groot, J. & Beek, T. A. (2006). A Liquid Chromatography- Mass Spectrometry- Based Metabolome Database for Tomato. Plant Physiol, 141:1205-1218.

Natarajan, S. S, Xu, C., Cregan, P., Caperna, T. J., Garrett, M. W. & Devanand, L., (2009). Utility Of Proteomics Techniques for Assessing Protein Expression. Regulate Toxicol Pharmacol; 54: 32–6.

Nedjip, G., & Karaogul, E. (2021). ADSORPTIVE BUBBLE SEPARATION METHODS (ABSM): FOAM FRACTION. INTERNATIONAL JOURNAL OF CURRENT NATURALSCIENCE AND ADVANCED PHYTOCHEMISTRY, 1(1), 27-43.

Nenni, M., Çelebier, M. & Süslü, İ. (2020). Proteomic Studies Overview, an Overview of Protemic Studies, Hacettepe University Journal of the Faculty of Pharmacy 40(1): 48-58.

O'Donnella, R., Holland, J. W., Deeth, H. B. C. & Alewood, P. (2004). Milk Proteomics. Int Dairy J, 14: 1013-1023.

O'Farrell, P. H. (1975). High Resolution Two-Dimensional Electrophoresis of Proteins. Journal of Biological Chemistry, 250(10): 4007-4021.

O'Flaherty S. & Klaenhammer, T.R. (2011). The Impact of Omic Technologies on The Study of Food Microbes. Annu Rev Food Sci Technol, 2: 353-371.

Omana, D. A., Liang, Y., Kav, N. V. & Wu, J. (2011). Proteomic Analysis of Egg White Proteins During Storage. Proteomics, 11: 144-153.

Ong, S. E., & Pandey, A. (2001). An Evaluation of The Use of Two-Dimensional Gel Electrophoresis in Proteomics. Biomolecular Engineering, 18(5): 195-205.

Ordovas, J. M. & Corella, D. (2004). Nutritional Genomics. Annu Rev Genomics Hum Gene, 5: 71-118.

Özcengiz, G. (2007). Proteomics: The Most Powerful Technology of The Post-Genomic Era. METU Newsletter. 15: 13-9.

Pedreschi, R., Hertog, M., Lilley, K. S., & Nicola, B. (2010). Proteomics for The Food Industry: Opportunities and Challenges. Crit Rev Food Sci Nutr, 50: 680-692.

Peng., J., & Gygi, S. P., 2001. Proteomics: The Move to Mixtures. Journal of Mass Spectrometry, 36(10): 1083-1091.

Piras, C., Roncada, P., Rodrigues, P. M., Bonizzi, L. & Soggiu, A. (2016). Proteomics in Food: Quality, Safety, Microbes, and Allergens. Proteomics, 16(5): 799-815.

Planque, M., Arnould, T., Dieu, M., Delahaut, P., Renard, P. & Gillard, N. (2016). Advances in Ultra-High Performance Liquid Chromatography Coupled to Tandem Mass 120 Spectrometry for Sensitive Detection of Several Food Allergens in Complex and Processed Foodstuffs. J.Chromatogr. A., 1464: 115–123.

Prasad, C., Dalton, L., Cde, R., Levy, H. (1998). Role Of Diet Therapy in Management of Hereditary Metabolic Diseases. Nutr Research, 18: 391-402.

Qui, N., Ma, M., Zhao, L., Liu, W., Li, Y. & Mine, Y. (2012). Comparative Proteomic Analysis of Egg White Proteins Under Various Storage Temperatures. Journal of Agricultural and Food Chemistry, 60: 7746–7753.

Rabilloud, T. (2002). Two-Dimensional Gel Electrophoresis in Proteomics: Old, Old Fashioned, But It Still Climbs Up The Mountains. PROTEOMICS: International Edition, 2(1): 3-10.

Rabilloud, T., Chevallet, M., Luche, S. & Lelong, C. (2010). Two-Dimensional Gel Electrophoresis in Proteomics: Past, Present and Future. Journal of Proteomics, 73(11): 2064-2077.

Raikos, V., Hansen, R., Campbell, L. & Euston, S. R. (2006). Separation and Identification of Hen Egg Protein Isoforms Using Sds–Page and 2d Gel Electrophoresis with Maldi-Tof Mass Spectrometry. Food Chemistry, 99(4): 702-710.

Rapoport S. I., Ramadan E. & Basselin M. (2011). Docosahexaenoic Acid (DHA) Incorporation into The Brain from Plasma, As An In Vivo Biomarker of Brain DHA Metabolism and Neurotransmission. Prostaglandins Other Lipid Media, 96: 109-113.

Resetar, D., Pavelic, S. K. & Josic, D. (2015). Foodomics for Investigations of Food Toxins. Current Opinion in Food Science, 4: 86-91.

Roncada, P., Piras, C., Soggiu, A., Turk, R., Urbani, A. & Bonizzi, L. (2012). Farm Animal Milk Proteomics. J Prot,. 75(14): 4259-74.

Rubert, J., Zachariasova, M. & Hajslova, J. (2015). Advances In High – Resolution Mass Spectrometry Based on Metabolomics Studies for Food – A Review: Food Additivies & Contaminants: Part A, 32 (10): 1685 – 708.

Rubio-Aliaga I, Köchhar S. & Silva-Zolezzi, I. (2012). Biomarkers of Nutrient Bioactivity and Efficacy: A Route Toward Personalized Nutrition. J Clin Gastroenterol. 46: 545-554.

Sakin, Y. S. & Tanoğlu, A. (2016). "Prebiotics and Their Effects on Human Health", Prebiotics Prebiotics Review, 5: 210–233.

Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P. E., Rolain, J. M., D. & Raoult, D. (2009). Ongoing Revolution in Bacteriology: Routine Identification of Bacteria By Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry. Clin. Infect. Dis. 49: 543–551.

Serrazanetti, D. I., Guerzoni, M. E., Corsetti, A. & Vogel, R. (2009). Metabolic Impact and Potential Exploitation of The Stress Reactions in Lactobacilli. Food Microbiol, 26: 700-711.

Sevimli, M. & Özçelik, N. (2013). Protein Expression Changes in Breast Cancer and Their Importance. Dicle Medical Journal, 40(1) :161-168.

Shubo, L., Yufeng, T., Pingyingzi, J., Ying, L., Xiaoling, L. & Hongshun, Y. (2021). Recent Advances in The Application of Metabolomics for Food Safety Control and Food Quality Analyses. Critical Reviews in Food Science and Nutrition, 61(9): 1448-1469.

Singh, N., Barthwal, R., Negi, A., Aggarwal, S., Kathuria, D., Kumar, V. & Paul, M. (2024). Foodomics: futuristic omic strategies to assess the impact of food nutrients on human health and gut microbiome. International Journal of Food Science and Technology, Early View, Online Version, March 2024. https://doi.org/10.1111/ijfs.17041

Smith R. (2009). Two-Dimensional Electrophoresis: An Overview. In: Two-Dimensional Electrophoresis Protocols, Sheehan D, Tyther R (editors), Humana Press, New York, 3-9.

Taşdemir, A. (2017). "Probiotics, Prebiotics, Synbiotics", Health Academy Kastamonu, 2(1): 71–88.

Wenk, M. R. (2005). The Emerging Field of Lipidomics. Nat Rev Drug Discov, 4: 594-610.

Wimmers, K., Murani, E., & Ponsuksili, S. (2010). Functional Genomics and Genetical Genomics Approaches Towards Elucidating Networks of Genes Affecting Meat Performance in Pigs. Brief Funct Genomics, 9: 251-8.

Wishart, D. S. (2008). Metabolomics: Applications to Food Science and Nutrition Research. Trend Food Sci Tech, 19: 482-493.

Wittmann, L. B., Graack, H. R., & Pohl, T. (2006). Two-dimensional Gel Electrophoresis as Tool for Proteomics Studies in Combination with Protein Identification By Mass Spectrometry. Proteomics, 6(17): 4688-4703.

Wu, R., Wang, W., Yu, D., Zhang, W., Li, Y., Sun, Z., Wu, J., Meng, H. & Zhang, H. (2009). Proteomics Analysis of Lactobacillus Casei Zhang, A New Probiotic Bacterium Isolated From Traditional Home-Made Koumiss in Inner Mongolia of China. Mol Cell Proteomics, 8: 2321-2338.

Xu, Y. J., Wang, C., Eugene, W. & Nam, C. (2014). Recent Developments and Applications of Metabolomics in Microbiological Investigations. Trac Trends in Analytical Chemistry, 56: 37-48.

Yaman, Ö. (2015). An Overview of Metabolomics Studies in Medicine. Journal of Bahri Dagdas Animal Research, 3(1): 33-46.

Yilmaz, İ. & Özpınar, H. (2019). Metabolomic Applications in The Fields of Nutrition and Food: An Overall Assessment, IGUSABDER, 8: 827-839.

Yuan, J., Zhu, L., Liu, X., Li, T., Zhang, Y., Ying, T., Wang, B., Wang, J., Dong, H., Feng, E., Li, Q., Wang, J., Wang, H., Wei, K., Zhang, X., Huang, C., Huang, P., Huang, L., Zeng, M. & Wang, H. (2006). A Proteome Reference Map and Proteomics Analysis of Bifidobacterium Longum Ncc2705. Mol Cell Proteomics, 5: 1105-1118.

Zapata, I., Zerby, H. N., & Wick, M. (2009). Functional Proteomic Analysis Predicts Beef Tenderness and The Tenderness Differential. J Agric Food Chem, 57: 4956-4963.

Zhang X., Yeeleng Y., Dong W., Chen G., & Chen F. (2008). Novel Omics Based Technology in Nutrition Research. Biotechnol Adv, 26: 169-176.

Published

2024-08-01

How to Cite

HAYOĞLU, I., GÜÇLÜ, S., & HAYOĞLU, B. (2024). Metabolomics and Proteomics in Foods. International Journal of Current Naturalscience and Advanced Phytochemistry, 4(1). Retrieved from https://ijcnap.com/index.php/pub/article/view/21

Issue

Section

Articles