The Microencapsulation Methods for the Stabilization and Controlled Release of Active Food and Pharmacological Ingredients

Authors

  • Gjulten NEDJIP Dr.
  • Gizem YUCEGONUL university of harran

DOI:

https://doi.org/10.5281/zenodo.17860954

Keywords:

Mikroencapsulation, Controlled release, stabilization, bioactive compounds, nutraceuticals, drug delivery

Abstract

Natural antioxidants play an important role in preserving food quality and promoting human health by reducing oxidative stress. However, the sensitivity of these compounds to environmental factors such as heat, light, and oxygen severely limits their direct application. Microencapsulation technologies offer an effective approach to overcome these limitations by increasing the stability of antioxidants and enabling controlled release. This review examines recent developments in the encapsulation of natural antioxidants, focusing particularly on basic encapsulation techniques such as wall materials, spray drying, spray cooling, extrusion, lyophilization, coacervation, cocrystallization, fluidized bed coating, and interfacial polymerization, as well as release mechanisms and release kinetics. A thorough understanding of the relationship between encapsulation materials, manufacturing processes, and release behavior is critical for the design of stable and efficient delivery systems. These technological advances offer broad application potential in the food, nutraceutical, and pharmaceutical fields by improving the bioavailability, functionality, and shelf life of antioxidant compounds.

Author Biographies

Gjulten NEDJIP, Dr.

 

   

Gizem YUCEGONUL, university of harran

 

   

References

Alemzadeh, I., Hajiabbas, M., Pakzad, H., Sajadi Dehkordi, S., & Vossoughi, A. (2020). Encapsulation of Food Components and Bioactive Ingredients and Targeted Release. International Journal of Engineering, 33(1), 1-11. https://doi.org/10.5829/ije.2020.33.01a.01

Alifakı, Y. (2019). Gilaburu (Viburnum opulus L.) meyvesinden yeni yöntemlerle fenolik bileşenlerin ekstraksiyonu ve gilaburu tozunun mikroenkapsülasyonu (Doctoral thesis). Ankara University, Institute of Science.

Azeredo, H. d. (2008). Encapsulação: aplicação à tecnologia de alimentos. Alimentos e Nutrição Araraquara, 16(1), 89-97.

Bampi, G. B., Backes, G. T., Cansian, R. L., de Matos, F. E., Ansolin, I. M. A., Poleto, B. C., Corezzolla, L. R., & Favaro-Trindade, C. S. (2016). Spray Chilling Microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and Its Use in the Preparation of Savory Probiotic Cereal Bars. Food and Bioprocess Technology, 9(8), 1422-1428. https://doi.org/10.1007/s11947-016-1724-z

Barbosa-Nuñez, J. A., Espinosa-Andrews, H., Cardona, A. A. V., & Haro-González, J. N. (2025). Polymer-based encapsulation in food products: a comprehensive review of applications and advancements. Journal of Future Foods, 5(1), 36-49. https://doi.org/https://doi.org/10.1016/j.jfutfo.2024.01.003

Başyiğit, M., & Baydar, H. (2017). Tıbbi adaçayı (Salvia officinalis L.)’nda farklı hasat zamanlarının uçucu yağ ve fenolik bileşikler ile antioksidan aktivite üzerine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 131-137.

Bezerra, F. M., Carmona, O. G., Carmona, C. G., Lis, M. J., & de Moraes, F. F. (2016). Controlled release of microencapsulated citronella essential oil on cotton and polyester matrices. Cellulose, 23(2), 1459-1470.

Biçer, A., Özkan, G., & Ergen, A. (2003). Lavanta bitkisi çiçeklerinden süperkritik CO2 ile uçucu yağların ekstraksiyonuna basıncın etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi, 16(4), 717-723.

Bińkowska, W., Szpicer, A., Stelmasiak, A., Wojtasik-Kalinowska, I., & Półtorak, A. (2024). Microencapsulation of Polyphenols and Their Application in Food Technology. Applied Sciences, 14(24).

Boggula, N., Bakshi, V., & Peddapalli, H. (2022). An overview of lipid based vesicular systems: stability and regulatory considerations. GSC biological and pharmaceutical sciences, 21(3), 053-061.

Bosnalı, S., & Ocak, Ö. Ö. (2019). Gıda sanayiinde kullanılan uçucu yağların mikroenkapsülasyon uygulamaları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(7), 846-853.

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology, 94(3), 223-253.

Cao, H., Saroglu, O., Karadag, A., Diaconeasa, Z., Zoccatelli, G., Conte-Junior, C. A., Gonzalez-Aguilar, G. A., Ou, J., Bai, W., Zamarioli, C. M., de Freitas, L. A. P., Shpigelman, A., Campelo, P. H., Capanoglu, E., Hii, C. L., Jafari, S. M., Qi, Y., Liao, P., Wang, M.,…Xiao, J. (2021). Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2(2), 109-139. https://doi.org/https://doi.org/10.1002/fft2.65

Carvalho, I. T., Estevinho, B. N., & Santos, L. (2016). Application of microencapsulated essential oils in cosmetic and personal healthcare products–a review. International journal of cosmetic science, 38(2), 109-119.

Carvalho, J. D. d. S., Oriani, V. B., de Oliveira, G. M., & Hubinger, M. D. (2019). Characterization of ascorbic acid microencapsulated by the spray chilling technique using palm oil and fully hydrogenated palm oil. LWT, 101, 306-314. https://doi.org/https://doi.org/10.1016/j.lwt.2018.11.043

Celik, H., & İlhan, K. (2023). Antioxidant Effective Aromatic Compounds. In A. Najjari (Ed.), Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules. IntechOpen. https://doi.org/10.5772/intechopen.106242

Colin, C., Akpo, E., Perrin, A., Cornu, D., & Cambedouzou, J. (2024). Encapsulation in Alginates Hydrogels and Controlled Release: An Overview. Molecules, 29(11). https://doi.org/10.3390/molecules29112515

De Billerbeck, V.-G. (2007). Huiles essentielles et bactéries résistantes aux antibiotiques. Phytothérapie, 5(5), 249-253.

Derkach, S. R., Voron'ko, N. G., & Kuchina, Y. A. (2022). Intermolecular Interactions in the Formation of Polysaccharide-Gelatin Complexes: A Spectroscopic Study. Polymers (Basel), 14(14). https://doi.org/10.3390/polym14142777

Desai, K. G. H., & Jin Park, H. (2005). Recent developments in microencapsulation of food ingredients. Drying technology, 23(7), 1361-1394.

Dhanusha, K., & Vijayalakshmi, M. (2023). Interfacial polymerization on microencapsulation. Journal of Pharma Insights and Research, 1(2), 108-117.

Díaz-Montes, E. (2022). Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging. Polysaccharides, 3(4), 761-775.

Díaz-Montes, E. (2023). Wall Materials for Encapsulating Bioactive Compounds via Spray-Drying: A Review. Polymers, 15(12).

Díaz, D. I., Beristain, C. I., Azuara, E., Luna, G., & Jimenez, M. (2015). Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules. Journal of Microencapsulation, 32(3), 247-254. https://doi.org/10.3109/02652048.2015.1010458

Favaro-Trindade, C. S., de Matos Junior, F. E., Okuro, P. K., Dias-Ferreira, J., Cano, A., Severino, P., Zielińska, A., & Souto, E. B. (2021). Encapsulation of Active Pharmaceutical Ingredients in Lipid Micro/Nanoparticles for Oral Administration by Spray-Cooling. Pharmaceutics, 13(8).

Figueiredo, J. d. A., Silva, C. R. d. P., Souza Oliveira, M. F., Norcino, L. B., Campelo, P. H., Botrel, D. A., & Borges, S. V. (2022). Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends in Food Science & Technology, 120, 274-287. https://doi.org/https://doi.org/10.1016/j.tifs.2021.12.026

Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689-709. https://doi.org/10.1038/s41573-021-00233-1

Garti, N. (2008). Delivery and controlled release of bioactives in foods and nutraceuticals. Elsevier.

Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology, 15(7), 330-347. https://doi.org/https://doi.org/10.1016/j.tifs.2003.10.005

Govindarajan, M., & Sivakumar, R. (2015). Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes. Parasitology research, 114(2), 601-612.

Grynyk, I. V., & Yezhov, V. M. (2023). Aromatic plants as a source of biologically active substances with insecticidal, fungicidal and bactericidal effects. Садівництво, 78, 93-96. https://doi.org/10.35205/0558-1125-2023-78-93-96

Gulcin, İ. (2025). Antioxidants: a comprehensive review. Arch Toxicol, 99(5), 1893-1997. https://doi.org/10.1007/s00204-025-03997-2

Gupta, S., Khan, S., Muzafar, M., Kushwaha, M., Yadav, A. K., & Gupta, A. P. (2016). Encapsulation: Entrapping essential oil/flavors/aromas in food. In Encapsulations (pp. 229-268). Elsevier.

Hussein, H. S., Nedjip, G., Ugurtay, A., Ahmed, A. A., & Karaogul, E. (2025). Optimization of Microwave-Assisted extraction for enhanced bioactive efficiency of Tirmania spp. And Terfezia claveryi: Their response surface methodology and Principal component analysis approach. Microchemical Journal, 214, 114029. https://doi.org/https://doi.org/10.1016/j.microc.2025.114029

Jackson, L. S., & Lee, K. (1991). Microencapsulation and the food industry. Lebensm. Wiss. Technol, 24(4), 289-297.

Jaganath, I. B., & Crozier, A. (2010). Dietary flavonoids and phenolic compounds. Plant phenolics and human health: biochemistry, nutrition, and pharmacology, 1, 1-50.

Jiang, L., Zhang, Z., Qiu, C., & Wen, J. (2024). A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods, 13(15).

Kanat, S., & Gülel, G. T. (2021). Mikroenkapsülasyon ve gıda endüstrisinde kullanım alanları. Aydın Gastronomy, 5(1), 81-89.

Karaogul, E., & Ugurtay, A. (2025). Unveiling modeling and SEM/XRD insights into enhanced antibacterial, antioxidant, and bioactive potentials of Micro-encapsulated Pistacia vera hull extract. Food Chemistry, 477, 143510. https://doi.org/https://doi.org/10.1016/j.foodchem.2025.143510

Karaogul, E., Ugurtay, A., Kelley, S. S., & Alma, M. H. (2025). Modelling on Extractions and Micro Nano Encapsulation of Pistacia terebintus Cambium Layer Gum Essential Oil; Antioxidant Activity and Structural Approach Via XRD, SEM and TGA/DSC. Plant Foods for Human Nutrition, 80(1), 57.

Kariduraganavar, M., Vijeth, S., & Heggannavar, G. (2019). Encapsulating wall materials for micro-/nanocapsules. in f. salaün (ed.), microencapsulation - processes, technologies and industrial applications. IntechOpen. https://doi.org/10.5772/intechopen.82014

Keshani, S., Daud, W. R. W., Nourouzi, M., Namvar, F., & Ghasemi, M. (2015). Spray drying: An overview on wall deposition, process and modeling. Journal of Food Engineering, 146, 152-162.

Khan, F., Ray, S., Craigie, A. M., Kennedy, G., Hill, A., Barton, K. L., Broughton, J., & Belch, J. J. (2014). Lowering of oxidative stress improves endothelial function in healthy subjects with habitually low intake of fruit and vegetables: a randomized controlled trial of antioxidant-and polyphenol-rich blackcurrant juice. Free Radical Biology and Medicine, 72, 232-237.

Khanna, S., & Chakraborty, J. (2018). Mosquito repellent activity of cotton functionalized with inclusion complexes of β-cyclodextrin citrate and essential oils, Fashion and Textiles, 5 (9), 1-18. In.

Koç, M., Sakin, M., & Kaymak-Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale University Journal of Engineering Sciences, 16(1).

Kodanovi, L., Jokhadze, M., Metreveli, M., Berashvili, D., & Bakuridze, A. (2020). ; Introduction of aromatic plants in the batumi botanical garden and their research for the content of biologically active compounds. Georgian Med News(304-305), 153-157.

Koh, W. Y., Lim, X. X., Tan, T.-C., Kobun, R., & Rasti, B. (2022). Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications. Applied Sciences, 12(19).

Kumar, A., Singh, U., Jaiswal, S. G., Dave, J., Wei, S., & Hailu, G. G. (2024). Recent trends in the encapsulation of functional lipids: comprehensive review. Sustainable Food Technology, 2(6), 1610-1630. https://doi.org/https://doi.org/10.1039/d4fb00205a

Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107, 227-247. https://doi.org/https://doi.org/10.1016/j.foodres.2018.02.026

Li, M., Ritzoulis, C., Du, Q., Liu, Y., Ding, Y., Liu, W., & Liu, J. (2021). Recent Progress on Protein-Polyphenol Complexes: Effect on Stability and Nutrients Delivery of Oil-in-Water Emulsion System. Front Nutr, 8, 765589. https://doi.org/10.3389/fnut.2021.765589

Lisitsyn, A., Semenova, A., Nasonova, V., Polishchuk, E., Revutskaya, N., Kozyrev, I., & Kotenkova, E. (2021). Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers, 13(10).

Lu, H., Zhang, S., Wang, J., & Chen, Q. (2021). A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems [Review]. Frontiers in Nutrition, Volume 8 - 2021. https://doi.org/10.3389/fnut.2021.783831

Lu, W., Yang, X., Shen, J., Li, Z., Tan, S., Liu, W., & Cheng, Z. (2021). Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients: Taking phenolic compounds as examples. Powder Technology, 394, 562-574. https://doi.org/https://doi.org/10.1016/j.powtec.2021.08.082

Lubbe, A., & Verpoorte, R. (2011). Cultivation of medicinal and aromatic plants for specialty industrial materials. Industrial crops and products, 34(1), 785-801.

Makhathini, N., Kaseke, T., & Fawole, O. A. (2023). Microencapsulation of organic pomegranate peel extract for a food circular economy: Effects of wall materials on powder functional attributes, antioxidant activity and antimicrobial property against foodborne pathogens. Journal of Agriculture and Food Research, 14, 100780. https://doi.org/https://doi.org/10.1016/j.jafr.2023.100780

Malešević, V. K., Vaštag, Ž., Radulović-Popović, L., Senka, M.-P., & Peričin-Starčević, I. (2016). Microencapsulation technology and essential oil pesticides for food plant production. In Essential Oils in Food Preservation, Flavor and Safety (pp. 123-129). Elsevier.

Marques, L. G., Silveira, A. M., & Freire, J. T. (2006). Freeze-drying characteristics of tropical fruits. Drying technology, 24(4), 457-463.

Mazár, J., Albert, K., Kovács, Z., Koris, A., Nath, A., & Bánvölgyi, S. (2025). Advances in Spray-Drying and Freeze-Drying Technologies for the Microencapsulation of Instant Tea and Herbal Powders: The Role of Wall Materials. Foods, 14(3).

Minozzo, M., Steffens, J., Backes, G. T., Paroul, N., & Cansian, R. L. (2021). Biological potential and microencapsulation of Cinnamomum cassia essential oil as an alternative for pest control in stored maize. Research, Society and Development, 10(14), e530101422334-e530101422334.

Morales-Medina, R., Drusch, S., Acevedo, F., Castro-Alvarez, A., Benie, A., Poncelet, D., Dragosavac, M. M., Defain Tesoriero, M. V., Löwenstein, P., Yonaha, V., Iturralde, R., Gauna Peter, R., & de Vos, P. (2022). Structure, controlled release mechanisms and health benefits of pectins as an encapsulation material for bioactive food components [10.1039/D2FO00350C]. Food & Function, 13(21), 10870-10881. https://doi.org/10.1039/D2FO00350C

Mrázková, M., Sumczynski, D., & Orsavová, J. (2023). Influence of Storage Conditions on Stability of Phenolic Compounds and Antioxidant Activity Values in Nutraceutical Mixtures with Edible Flowers as New Dietary Supplements. Antioxidants, 12(4).

Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3(4), 793-829. https://doi.org/10.3390/pharmaceutics3040793

Nedjip, G., & Karaogul, E. (2025). Role of model equations and energy dynamics in understanding bioactive compounds of olive leaf extract by LC-MS/MS; their evaluation using a cluster approach. Journal of Chromatography B, 1267, 124807. https://doi.org/https://doi.org/10.1016/j.jchromb.2025.124807

Nikmaram, N., Roohinejad, S., Hashemi, S., Koubaa, M., Barba, F. J., Abbaspourrad, A., & Greiner, R. (2017). Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC advances, 7(46), 28951-28964.

Norkaew, O., Thitisut, P., Mahatheeranont, S., Pawin, B., Sookwong, P., Yodpitak, S., & Lungkaphin, A. (2019). Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chemistry, 294, 493-502. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.05.086

Olabisi, R. M. (2015). Cell microencapsulation with synthetic polymers. Journal of Biomedical Materials Research Part A, 103(2), 846-859. https://doi.org/https://doi.org/10.1002/jbm.a.35205

Ozkan, G., Kostka, T., Esatbeyoglu, T., & Capanoglu, E. (2020). Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules, 25(23).

Özer, S. (2021). Süperkritik CO₂ ile limon otu (Lemon verbena) ekstraktının optimizasyonu, enkapsülasyonu ve diğer metotlarla karşılaştırılması (Master’s thesis). Harran University, Institute of Science.

Paucar, O. C., Tulini, F. L., Thomazini, M., Balieiro, J. C. C., Pallone, E. M. J. A., & Favaro-Trindade, C. S. (2016). Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D3. Food and Bioproducts Processing, 100, 344-350. https://doi.org/https://doi.org/10.1016/j.fbp.2016.08.006

Paula, D. A., Martins, E. M. F., Costa, N. A., de Oliveira, P. M., de Oliveira, E. B., & Ramos, A. M. (2019). Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. Int J Biol Macromol, 133, 722-731. https://doi.org/10.1016/j.ijbiomac.2019.04.110

Paulo, F., & Santos, L. (2017). Design of experiments for microencapsulation applications: A review. Materials Science and Engineering: C, 77, 1327-1340.

Picos-Corrales, L. A., Morales-Burgos, A. M., Ruelas-Leyva, J. P., Crini, G., García-Armenta, E., Jimenez-Lam, S. A., Ayón-Reyna, L. E., Rocha-Alonzo, F., Calderón-Zamora, L., Osuna-Martínez, U., Calderón-Castro, A., De-Paz-Arroyo, G., & Inzunza-Camacho, L. N. (2023). Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers (Basel), 15(3). https://doi.org/10.3390/polym15030526

Poshadri, A., & Aparna, K. (2010). Microencapsulation technology: a review. Journal of Research ANGRAU, 38(1), 86-102.

Premi, M., & Sharma, H. K. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105, 1232-1240. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2017.07.160

Proestos, C., Boziaris, I. S., Kapsokefalou, M., & Komaitis, M. (2008). Natural antioxidant constituents from selected aromatic plants and their antimicrobial activity against selected pathogenic microorganisms. Food Technology and Biotechnology, 46(2), 151-156.

Rahim, M. A., Zahran, H. A., Jaffar, H. M., Ambreen, S., Ramadan, M. F., Al-Asmari, F., Castro-Muñoz, R., & Zongo, E. (2025). Liposomal Encapsulation in Food Systems: A Review of Formulation, Processing, and Applications. Food Sci Nutr, 13(8), e70587. https://doi.org/10.1002/fsn3.70587

Ramos, R., Bernard, J., Ganachaud, F., & Miserez, A. (2022). Protein-Based Encapsulation Strategies: Toward Micro- and Nanoscale Carriers with Increased Functionality. Small Science, 2(3), 2100095. https://doi.org/https://doi.org/10.1002/smsc.202100095

Ricardo, F., Pradilla, D., Luiz, R., & Alvarez Solano, O. A. (2021). A Multi-Scale Approach to Microencapsulation by Interfacial Polymerization. Polymers, 13(4).

Sartori, T., Consoli, L., Hubinger, M. D., & Menegalli, F. C. (2015). Ascorbic acid microencapsulation by spray chilling: Production and characterization. LWT - Food Science and Technology, 63(1), 353-360. https://doi.org/https://doi.org/10.1016/j.lwt.2015.03.112

Schubert, W., Bonnekoh, B., Pommer, A. J., Philipsen, L., Böckelmann, R., Malykh, Y., Gollnick, H., Friedenberger, M., Bode, M., & Dress, A. W. M. (2006). Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nature Biotechnology, 24(10), 1270-1278. https://doi.org/10.1038/nbt1250

Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. Int J Biol Macromol, 107(Pt B), 1800-1810. https://doi.org/10.1016/j.ijbiomac.2017.10.044

Sobulska, M., & Zbicinski, I. (2021). Advances in spray drying of sugar-rich products. Drying Technology, 39(12), 1774-1799.

Soroh, A., Owen, L., Rahim, N., Masania, J., Abioye, A., Qutachi, O., Goodyer, L., Shen, J., & Laird, K. (2021). Microemulsification of essential oils for the development of antimicrobial and mosquito repellent functional coatings for textiles. Journal of Applied Microbiology, 131(6), 2808-2820.

Sousa, V. I., Parente, J. F., Marques, J. F., Forte, M. A., & Tavares, C. J. (2022). Microencapsulation of Essential Oils: A Review. Polymers (Basel), 14(9). https://doi.org/10.3390/polym14091730

Suganya, V., & Anuradha, V. (2017). Microencapsulation and nanoencapsulation: a review. Int. J. Pharm. Clin. Res, 9(3), 233-239.

Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial agents and chemotherapy, 49(6), 2474-2478.

Tulini, F. L., Souza, V. B., Thomazini, M., Silva, M. P., Massarioli, A. P., Alencar, S. M., Pallone, E. M. J. A., Genovese, M. I., & Favaro-Trindade, C. S. (2017). Evaluation of the release profile, stability and antioxidant activity of a proanthocyanidin-rich cinnamon (Cinnamomum zeylanicum) extract co-encapsulated with α-tocopherol by spray chilling. Food Research International, 95, 117-124. https://doi.org/https://doi.org/10.1016/j.foodres.2017.03.010

Umer, H., Nigam, H., Tamboli, A. M., & Nainar, M. S. M. (2011). Microencapsulation: Process, techniques and applications. International journal of research in pharmaceutical and biomedical sciences, 2(2), 474-481.

Wangkulangkool, M., Ketthaisong, D., Tangwongchai, R., Boonmars, T., & Lomthaisong, K. (2023). Microencapsulation of Chia Oil Using Whey Protein and Gum Arabic for Oxidation Prevention: A Comparative Study of Spray-Drying and Freeze-Drying Methods. Processes, 11(5).

Wiggers, H. J., Chevallier, P., Copes, F., Simch, F. H., da Silva Veloso, F., Genevro, G. M., & Mantovani, D. (2022). Quercetin-Crosslinked Chitosan Films for Controlled Release of Antimicrobial Drugs. Front Bioeng Biotechnol, 10, 814162. https://doi.org/10.3389/fbioe.2022.814162

Xiao, Z., Xia, J., Zhao, Q., Niu, Y., & Zhao, D. (2022). Maltodextrin as wall material for microcapsules: A review. Carbohydrate Polymers, 298, 120113. https://doi.org/https://doi.org/10.1016/j.carbpol.2022.120113

Xie, S., Qu, P., Luo, S., & Wang, C. (2022). Graduate Student Literature Review: Potential uses of milk proteins as encapsulation walls for bioactive compounds. Journal of Dairy Science, 105(10), 7959-7971.

Xiong, W., Li, Y., Ren, C., Li, J., Li, B., & Geng, F. (2021). Thermodynamic parameters of gelatin-pectin complex coacervation. Food Hydrocolloids, 120, 106958. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.106958

Yan, D., Li, Y., Liu, Y., Li, N., Zhang, X., & Yan, C. (2021). Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules, 26(23). https://doi.org/10.3390/molecules26237136

Yu, F., Wang, Y., Zhao, Y., Chou, J., & Li, X. (2021). Preparation of Polyurea Microcapsules by Interfacial Polymerization of Isocyanate and Chitosan Oligosaccharide. Materials (Basel), 14(13). https://doi.org/10.3390/ma14133753

Zahran, H., Bat, H., & Şahin-Yeşilçubuk, N. (2022). Influence of wall material combination on the lipid oxidation of the hazelnut oil microcapsules. Discover Food, 2(1), 17. https://doi.org/10.1007/s44187-022-00018-4

Zaky, A., Elbakry, A., Ehmer, A., Breunig, M., & Goepferich, A. (2010). The mechanism of protein release from triglyceride microspheres. Journal of Controlled Release, 147(2), 202-210. https://doi.org/https://doi.org/10.1016/j.jconrel.2010.07.110

Zhu, F. (2017). Encapsulation and delivery of food ingredients using starch based systems. Food Chemistry, 229, 542-552. https://doi.org/https://doi.org/10.1016/j.foodchem.2017.02.101

Published

2025-12-09

How to Cite

NEDJIP, G., & YUCEGONUL, G. (2025). The Microencapsulation Methods for the Stabilization and Controlled Release of Active Food and Pharmacological Ingredients. International Journal of Current Naturalscience and Advanced Phytochemistry, 5(1), 45–61. https://doi.org/10.5281/zenodo.17860954