Black Garlic: Production Possibilities, Physicochemical Changes During the Production Process and Effects on Health

Authors

  • Selcen GÜÇLÜ Harran Univ.
  • Ibrahim HAYOĞLU Harran Univ.

DOI:

https://doi.org/10.5281/zenodo.17860847

Keywords:

black garlic, garlic, antioxidant, health

Abstract

The benefits of garlic for human health have been known for centuries. Due to its valuable compounds, many people avoid consuming it due to its pungent odor and bitter taste, although experts recommend that people add it to their diet lists and consume it persistently. In order to change this disadvantage and increase consumption, black garlic has been produced by developing different production techniques. Black garlic is produced by fermenting fresh garlic in a controlled environment at 45-90°C and 50-90% relative humidity until it turns black, and during this process, physicochemical properties such as color, pH, dry matter, reducing sugar and nutrient content change with the effect of Maillard and enzymatic reactions. With this fermentation process, the alliin and allicin substances that give fresh garlic its characteristic odor and taste are reduced, so that the undesirable bitter taste and odor disappear. The fact that black garlic has higher antioxidant activity compared to fresh garlic has made this product more preferable in terms of health, not only in terms of taste and smell, but even with this feature. Although black garlic has been consumed in Asia and Europe for many years, our country has met this product very recently. In this review, we will focus on black garlic production technology, techniques used to increase production efficiency, changes that occur during the production process and health effects.

References

Abe, K., Hori, Y., and Myoda, T. (2020). Volatile compounds of fresh and processed garlic. Experimental and Therapeutic Medicine, 19(2), 1585-1593.

Agusti, K. T. (1996). Therapeutic values of onion (Allium cepaL) and garlic (Allium sativum L.). Indian Journal of Experimental Biology, 34, 634–640.

Ahsan, M., and Islam, S. N. (1996). Garlic: a broad spectrum antibacterial agent effective against common pathogenic bacteria. Fitoterapia, 67(4), 374-376.

Akan, S., and Halloran, N. (2012). Effect of Preharvest and Postharvest Treatments on Storage Life and Quality of Garlic. FOOD, 37(4), 227-234.

Akan, S. (2014). Black garlic. FOOD, 39(6), 363-370.

Amagase, H., Petesch, BL, Matsuura, H., Kasuga, S., and Itakura, Y. (2001). Intake of garlic and its bioactive components, The Journal of Nutrition, 131(3), 955-962.

Armitage, J. A., Poston, L., and Taylor, P. D. (2008). Developmental Origins of Obesity and Metabolic Syndrome: The Role of Maternal Obesity. Front. Horm. Res., 36, 73-84.

Ayaz, E., and Alpsoy, HC (2007). Garlic (Allium sativum) and Its Use in Traditional Treatment, Turkish Journal of Parasitology, 31(2), 145-149.

Bae, S. E., Cho, S. Y., Won, Y. D., Lee, S. H., and Park, H. J. (2014). Changes in S-allyl Cysteine Contents and Physicochemical Properties of Black Garlic during Heat Treatment. Food Sci Technol - Lebensmittel-Wissenschaft & Tech., 55(1), 397–402.

Banerjee, S. K., Mukherjee, P. K, and Maulik, S. K. (2003). Garlic as an antioxidant: The good, the bad and the ugly. Phytotherapy Research, 17, 97-106.

Baumgartner, S., Dax, T. G., Praznik W., and Falk, H. (2000). Characterisation of the High-molecular Weight Fructan Isolated from Garlic (Allium sativum L.). Carbonhydrate Research, 38(2), 177-183.

Beato, V. M., Orgaz, F., Mansilla. F., and Montaño, A. (2011). Changes in Phenolic Compounds in Garlic (AlliumSativum L.) Owing to the Cultivar and Location of Growth. Plant Foods Human Nutr., 66(3), 218–223.

Bordia, A. K., Josh, H. K., and Sanadhya, Y. K. (1977). Effect of garlic oil on fibrinolytic activity in patient with CHD. Atherosclerosis, 28, 155-159.

Bratman, S. (2000). Your Complete Guide to Herbs, Prima Publishing, California, 67-75. Bradley, C. (2009). New Black Magic: Black Garlic is New Food Sensation. Herald Times. 9, 2-25.

Cantwell, M. I., Kang, J., and Hong, G. (2003). Heat treatments control sprouting and rooting of garlic cloves. Postharvest Biol. Technol., 30, 57-65.

Chen, Y. T., Chen, Y. A., Lee, C. H., Wu, J. T., Cheng, K. C., and Hsieh, C. W. (2020). A Strategy for Promoting γ-glutamyltransferase activity and enzymatic synthesis of S-allyl-(L)-cysteine in aged garlic via high hydrostatic pressure pretreatments. Food Chemistry, 316, 126347.

Choi, D. J., Lee, S. J., Kang, M. J., Cho, H. S., Sung, N. J., and Shin, J. H. (2008). Physicochemical characteristics of black garlic (Allium sativum L.). Journal of Korean Soc. Food Sci. Nutr., 37(4), 465–471.

Choi, I. S., Cha, H. S., and Lee, Y. S. (2014). Physicochemical and antioxidant properties of black garlic. Molecules, 19(10), 16811-16823.

Chu, Q., J., Lee, D., Tsao, T., W., Wang, S. W., and Wong, Y. C. (2007). S-allyl cysteine, a water-soluble garlic derivative, suppreses the growth of a human and rogen independent prostate cancer xenograft, CWR22R, under in vivo conditions. BJU International, 99, 925-932.

Chua, S. L., Abdullah, F. I., and Lim, S. H. (2022). Physiochemical Changes and Nutritional Content of Black Garlic During Fermentation. Applied Food Research, 2(2), 100216.

Colín-González, A.L., Santana, R.A., Silva-Islas, C. A., Chánez-Cárdenas, M.E., Santamaria, A., and Maldonado, P. D. (2012). The antioxidant mechanisms underlying the aged garlic extract and S-allylcysteine-induced protection. Oxidative Medicine and Cellular Longevity, 1, 1-16.

Corzo-Martínez, M., Corzo, N., and Villamiel, M. (2007). Biological Properties of Onions and Garlic. Trends in Food Science & Technology, 18(12), 609-625.

Czompa, A., Szoke, K., Prokisch, J., Gyongyosi, A., Bak, I., Balla, G., Tosaki, A., and Lekli, I. (2018). Aged (black) versus raw garlic against is chemia/reperfusion-induced cardia ccomplications. International Journal of Molecular Sciences, 19(4), 1-14.

Ding, Y., Zhou, Y., Wang, D., Dai, B and Deng, Y. (2021). Metabolite, Volatile and Antioxidant Profiles of Black Garlic Stored in Different Packaging Materials. Food Control, 127.

El-Mofty, M. M. (1994). Preventive action of garlic on aflatoxin B1-induced carcinosgenisis in the toad Bufo regularis. Nutr Cancer, 21(1), 95-100.

Ergin, S. (2019). Benefits of Black Garlic on Human Health. Turkish Journal of Agriculture-Food Science and Technology, 7(7), 940–945.

Erol, N., and Ersus, S. (2022). Black Garlic (Allium sativum) Production: Physical and Chemical Changes During Production. Academic Food, 20(4), 404-411.

Erşahin, R. Determination of Changes in Allinase Gene Expression in Garlic During Storage, Master's Thesis, Uludağ University, (2020).

Farhat, Z.,Hershberger, P. A., Freudenheim, J. L., Mammen, M. J., Hageman Blair,, R., Aga, D., S., and Mu, L. (2021). Types of garlic and the iranti cancer and antioxidantactivity. A review of the epidemiologic and experimental evidence. European Journal of Nutrition, 1-25.

Fleischauer, A. T., Poole, C., and Arab, L. (2000). Garlic consumption and cancer prevention: meta-analyses of colorectal and stomach cancers. Am J Clin Nutr, 72, 1047–1052.

Gorzo, M. ., Gorzo, N., and Villamiel, M. (2007). Biological properties of onions and garlic. Trends in FoodScience & Technology. 18, 609-625.

Haris, J. C., Plummer, S. Turner, M. P., and Lloyd, D. (2000). The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiol, 146(12), 3119-27.

Hanafy, M. S., Shalaby, S. M., and El-Fouly, M. A. (1994). Effect of garlic on lead contents in chicken tissues. D. T. W., 101 (4), 157-158.

Hermawati, E., Sari, D. C. R., and Partadiredja, G. (2015). The Effects of Black Garlic Ethanol Extract on the Spatial Memory and Estimated Total Number of Pyramidal Cells of the Hippocampus of Monosodium Glutamate-Exposed Adolescent Male Wistar Rats. Anat. Sci. İnt., 90(4), 275-86.

Ichikawa, M., Yoshida, J., Ide, N., Sasaoka, T., Yamaguchi, H., and Ono, K. (2006). Tetrahydro-β-carboline derivatives in aged garlic extract show antioxidant properties. The Journal of Nutrition, 136(3), 726S-731S.

Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H., and Itakura, Y. (1994). Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Plant a Medica, 60, 417-420.

Ibret, U. B. (2005). A Geographical Investigation on Garlic Cultivation in Turkey and Taskopru Garlic. Marmara Geography Journal, 12(7).

Ilgun, S., KonguL Safak, E., Akçakaya Mutlu, S., and Seker Karatoprak, G. (2022). Evaluation of Antioxidant, Cytotoxic and Antidiabetic Effects of Single Clove Black Garlic Extracts. Istanbul Sciences University Journal of Health Sciences, 17,411-425.

Jang, E. K., Seo, J. H. and Lee, S. P. (2008). Physiological activity and antioxidative effects of aged black garlic (Allium sativum L.) extract. Korean Journal of Food Science and Technology, 40, 443–448.

Jeong, Y., Y., Ryu, J., H., Shin, J., H., Kang, M., J., Kang, J., R., Han, J., and Kang, D., (2016). Comparison of Anti-oxidant and Anti-inflammatory Effects between Fresh and Aged Black Garlic Extracts. Molecules., 21(4), 430.

Jeong, K. Y., and Sim, K. H. (2020). Comparison of the Nutritional Composition of Quinoa Seeds Cultivated in Korea Depending on Different Cooking Methods. Korean J. Food Nutr., 33(2), 117–130.

Jing, H. (2020). Black garlic: Processing, composition change, and bioactivity. E. Food, 1(3), 242-246.

Jung, Y. M., Lee, S. H., Lee, D. S., You, M. J., Chung, I. K., Cheon, W. H., and Ku, S. K. (2011). Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutrition research, 31(5), 387-396.

Kahkonen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., and Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47, 3954- 3962.

Kandemirli, F., Içli, N., Bakır, TK, Nazlı, B., and Aydın, S. (2020). The investigation of the effect of freezing pretreatment on properties of black garlic produced from Kastamonu garlic. Food and Health, 6(1), 1-8.

Kang, O. J. (2016). Evaluation of melanoidins formed from black garlic after different thermal processing steps. Preventive Nutrition and Food Science, 21(4), 398-405.

Karalis, K. P., Giannogonas P., Kodela, E., Koutmani, Y., Zournakis, M., and Teli, T. (2009). Mechanisms of Obesity and Related Pathology: Linking Immune Responses to Metabolic Stress, FEBS, J., 276(20), 5747-5754.

Kemper, K. J. (2000). Garlic (Allium sativum). The Longwood Herbal Task Force. https://www.yumpu.com/en/document/read/3781207/garlic-allium-sativumlongwood-herbal-task-force (Erişim tarihi: 10.04.2023).

Khuda-Bukhsh, A. R., Das, S., and Saha, S. K. (2014). Molecular approaches toward targeted cancer prevention with some food plants and their products: Inflammatory and other signal pathways. Nutrition and Cancer, 66, 194-205.

Kim, S. B., Hayase, F., and Kato, H. (1987). Desmutagenic effect of α-dicarbonyl and α-hydroxycarbonyl compounds against mutagenic heterocyclic amines. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 177(1), 9-15.

Kim, N. Y., Park, M. H., Jang, E. Y., and Lee, J. (2011). Volatile Distribution ın Garlic (Allium sativum L.) by Solid Phase Microextraction (SPME) with Different Processing Conditions. Food Science and Biotechnology, 20(3), 775-782.

Kim, J. H., Nam, S. H., Rico, C. W., and Kang, M. Y. (2012). A comparative study on the antioxidative and anti‐allergicactivities of fresh and aged black garlic extracts. International journal of food science & technology, 47(6), 1176-1182.

Kim, J. S., Kang, O. J., and Gweon, O. C. (2013). Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. Journal of Functional Foods, 5(1), 80–86.

Kim, S. R., Jung, Y. R., An, H. J., Kim, D. H., Jang, E. J., Choi, Y. J., and Chung, H. Y. (2013). Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-κB signaling. PloS one, 8(9), e73877.

Kimura, S., Tung, Y. C., Pan, M. H., Su, N. W., Lai, Y. J., and Cheng, K. C. (2017). Black garlic: A criticalreview of itsproduction, bioactivity, andapplication. Journal of Food and Drug Analysis, 25(1), 62-70.

Koch, H. P., and Lawson, L. D. (1996). Garlic: The Science and Therapeutic Application of Allium sativum L. and Related Species.

Kodera, Y. (1997). Dietary tolerance⁄absorption⁄metabolism of phytochemicals in garlic. In: Nutraceuticals-DesignerFoods III, Garlic, Soy and Licorice (edited by P. Lanchance). Trumbull, CT: Food and Nutrition Press., 95–105.

Kong, Z., Shinohara, K., Mitsuiki, M., Murakami, H., and Omura, H. (1989). Desmutagenicity of Furan Compounds towards Some Mutagens. Agric. Biol. Chem., 53, 2073-2079.

Kozan, G. Chemical Composition, Antibacterial and Antioxidant Activity Comparison of Essential Oils of Allium Sativum L. (Kastamonu and Denizli Local) Plant, Master Thesis, Pamukkale University, 2012.

Kumar, V. M., Henley, A., K., Nelson, C. J., Indumati, O., Rao, Y. P., Rajanna, S., and Rajanna, B. (2017). Protective Effect of Allium Sativum (Garlic) Aqueous Extract against Lead-induced Oxidative Stress in the Rat Brain, Liver, and Kidney. Environ. Sci. Pollut. Res., 24(2), 1544–1552.

Lansalot‐Matras, C., and Moreau, C. (2003). Dehydration of fructose into 5‐hydroxymethylfurfural in the presence of ionic liquids. Catalysis Communications, 4(10), 517–520.

Lanzotti, V., 2006. The Analysis of Onion and Garlic. Journal of Chromatography, 1112(1): 3-22.

Lanzotti, V., Bonanomi, G., and Scala, F. (2013). What makes Allium species effective against pathogenic microbes?. Phytochemistryreviews, 12, 751-772.

Lee, J., and Harnly, J. M. (2005). Free amino acid and cysteine sulfoxide composition of 11 garlic (Allium sativum L.) cultivars by gas chromatography with flame ionization and mass selective detection. Journal of agricultural and food chemistry, 53(23), 9100–9104.

Lee, Y. M., Gweon, O. C., Seo, Y. C., Im, J., Kang, M. J., Kim, M. J., and Kim, J. I. (2009). Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabet esmellitus. Nutrition Research and Practice, 3(2), 156-161.

Lee, E. N., Choi, Y. W., Kim, H. K., Park, J. K., Kim, H. J., Kim, M. J., Lee, H. W., Kim, K. H., Bae, S. S., Kim, B. S., and Yoon, S. (2011). Chloroform extract of aged black garlic attenuates TNF-α-induced ROS generation, VCAM-1 expression, NF-κB activation and adhesiveness formonocytes in humanumbilical vein endothelial cells. Phytother Res., 25(1), 92-100.

Lei, M., Zhang, Z., Liu, R., Zhang, M., and Xu, M. (2015). The physicochemical changes of black garlic during thermal processing. Advance Journal of Food Science and Technology, 7(9), 712-715.

Lembo, G., Balato, N., Patruno, C., Auricchio, L. and Ayala, F. (1991). Allergic contact dermatitis due to garlic (Allium sativum). Contact Dermatitis, 25, 330–331.

Li, N., Lu, X., Pei, H.,and Qaio, X. (2015). Effect of Freezing Pretreatment on the Processing Time and Quality of Black Garlic. J. Food Process Eng., 38(4), 329–335.

Li, F., Cao, J., Liu, Q., Hu,X., Liao, X., and Zhang, Y. (2020). Acceleration of the Maillard reaction and achievement of product quality by high pressure pretreatment during black garlic processing. Food Chemistry, 318, 126517.

Liang, T., Wei, F., Lu, Y., Kodani, Y., Nakada, M., Miyakawa, T., and Tanokura, M. (2015). Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. Journal of Agricultural and Food Chemistry, 63(2), 683-691.

Losling, P. (2003). Alicin the heart of garlic. NWI Publishing, Callahan Florida, s.6-158.

Lu, X. Study on Formation Mechanism and Function of Black Garlic Oligosaccharides, Shandong Agriculture University, Doctoral Thesis, 2017.

Lu, X., Li, N., Qiao, X., Qiu, Z., and Liu, P. (2018). Effects of thermal treatment on polysaccharide degradation during black garlic processing. LWT Food Science and Technology, 95(61), 223-229.

Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., and Lerici, C.R. (2000). Review of nonenzymaticbrowningandantioxidantcapacity in processed foods. Trends in Food Science & Technology., 11, 340–346.

Martínez-Casas, L., Lage-Yusty, M., and López-Hernández, J. (2017). Changes in the aromatic profile, sugars, and bioactive compounds when purple garlic is transformed into black garlic. Journal of agricultural and food chemistry, 65(49), 10804-10811.

Martins-Sara, I. F. S., and Van Boekel Martinus A. J. S. (2000). A kinetic model for the glucose/glycine Maillard Reaction Pathways. Food Chemistry, 90, 257-269.

Medina, M. A. T., Aparicio, J. P., Ortega, A. M., and Rojas, R. M. (2019). Influence of variety and storage time of fresh garlic on the physicochemical and antioxidant properties of black garlic. Foods, 8, 314-324.

Michail, K., Matzi, V., Maier, A., Herwig, R., Greilberger, J., Juan, H., Kunert, O., and Wintersteiger, R. (2007). Hydroxymethylfurfural: An Enemy or a Friendly Xenobiotic? A Bioanalytical Approach. Anal. Bioanal. Chem., 387(8), 2801.

Molina-Calle, M., Prıego-Capote, F., and Luque de Castro, M. D. (2017). Headspace-GC-MS volatile profile of black garlic vs fresh garlic: evolution along fermentation and behavior underheating. LWT-Food Science and Technology, 80:98-105.

Mondal, A., Banerjee, S., Bose, S., Mazumder, S., Haber, R. A., Farzaei, M. H., and Bishayee, A. (2022). Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacological research, 175, 105837.

Montano, A., Casado, F. J., De Castro, A., Sánchez, A. H., and Rejano, L. (2004). Vitamin content and amino acid composition of pickled garlic processed withand without fermentation. Journal of Agricultural and Food Chemistry, 52, 7324-7330.

Najman, K., Sadowska, A., and Hallmann, E. (2020). Influence of thermal processing on the bioactive, antioxidant, and physicochemical properties of conventional and organic agriculture black garlic (Allium sativum L.). Applied Sciences, 10(23), 8638.

Nomura, S., Ichinose, T., Jinde, M., Kawashima, Y., and Tachiyashiki, K. (2008). Tea Catechins Enhance the Mrna Expression of Uncoupling Protein 1 in Rat Brown Adipose Tissue. J. Nutr. Biochem., 19(12), 840-847.

Qiu, Z., Zheng, Z., Zhang, B., Sun-Waterhouse, D., and Qiao, X. (2020). Formation, nutritional value, and enhancement of characteristic. Comprehensive Reviews in Food Science and Food Safety, 1-34.

Ozaydin, GA, Arin, E., and Onem, E. (2020). Black Garlic (Alliumsativum L.) as a New Functional Food in Turkish Cuisine: Phenolic Content and Its Effect on Bacterial Communication (Quorum Sensing). Academic Food, 18(1), 27-35.

Ozcelik, S., Sumer, Z., Degerli, S., Ozan, F., and Sökmen, A. (2006). Can garlic (Allium sativum) extract be used as a scolocidal agent? 3rd National Hydatidology Congress, 6-9 September, 2006, Samsun, Oral Presentation. P.52.

Qiu, Z., Zheng, Z., Zhang, B., Sun-Waterhouse, D., and Qiao, X. (2020). Formation, nutritional value, and enhancement of characteristic. Comprehensive Reviews in Food Science and Food Safety, 1-34.

Pakakaew, P., Phımolsırıpol, Y., Taesuwan, S., Kumphune, S., Klangpetch, W., and Utama-Eng, N. (2022). The Shortest Innovative Process of Black and Golden Garlic for Enhancing the S-Allylcysteine Content and Antioxidant Activity. Research Square.

Rabinkov, A., Miron, T., Konstantinovski, L., Wilchek, M., Mirelman, D. and Weiner, L. (1998). The mode of action of allicin: Trapping of radicals and interaction with thiol containing proteins. Biochimica et Biophysica Acta, 1379, 233–244.

Ramakrishnan, V., Chintalwar, G. J., and Banerji, A. (1989). Environmental persistance of diallyl disulphide, an insecticidal principle of garlic and its metabolism in mosquitoes. Chemosphere, 18, 1525-1529.

Rios-Rios, K. L., Montilla, A., Olano, A., and Villamiel, M. (2019). Physicochemical changes and sensorial propeerties during black garlic elaboration: A Review. Trends in Food Science and Technology, 88, 459-467.

Saikat, A. S. M., Hossain, R., Mina, F. B., Das, S., Khan, I. N., Mubarak, M. S., and Islam, M. T. (2021). Antidiabetic effect of garlic. Revista Brasileira de Farmacognosia, 1-11.

Saldamlı, I. (2007). Food Chemistry. Hacettepe University Publications, Ankara, 463-492.

Sasaki, J. (2006). Bioactive phytocompounds and products traditionally used in Japan. In: Iqubal A, Farrukh A, Mohammand O (Eds) Modern Phytomedicine-Turning Medical Plants into Drugs. Wiley VCH, Weinheim, 79-96.

Sato, E., Kohno, M., Hamano, H., and Niwano, Y. (2006). Increased Antioxidative Potency of Garlic by Spontaneous Short-Term Fermentation. Plant Food Human Nutrition, 61, 157-160.

Shashikanth, K. N., Basappa, S. C. and Murthy, V. S. (1986). Effect of feding raw and boiled garlic (Allium sativum L.) extracts on the growth, caecal microflora and serum proteins of albino rats. Nutrition Reports International, 33, 313–319.

Sim, H. J., Seo, W. T., Choi, M. H., Kim, K. H., Shin, J. H., and Kang, M. J. (2016). Quality Characteristics of Vinegar Added with Different Levels of Black Garlic. Korean J. Food Sc. Technol., 32(1), 16–26.

Soffar, S. A., and Mokhtar, G. M. (1991). Evaluation of the antiparasitic effect of aqueous garlic (Allium sativum) extract in hymenolepiasis nana and giardiasis. J Egypt Soc Parasitol, 21(2), 497-502.

Şaşmaz, K. H. Determination of Quality Parameters and Characterization of Bioactive Compounds in Fresh and Black Garlic, Master Thesis, Çukurova University, (2021).

Turfan, N., Kurnaz, A., Alay, M., and Sarıyıldız, T. (2016). Determination of Some Chemical Properties in Taşköprü Garlic Stored under Different Conditions. Journal of Forestry Faculty, 16(2), 427-437.

Vhangani, L. N., and Van Wyk, J. (2016). Antioxidant activity of Maillard reaction products (MRPs) in a lipid‐rich model system. Food Chemistry, 208, 301-308.

Vural, H., Eşiyok, D., and Duman, İ. (2000). Cultivated Vegetables (Vegetable Growing). Ege University, Faculty of Agriculture, Bornova, İzmir, pp. 42-51.

Wang, D., Feng, Y., Liu, J., Yan, J., Wang, M., Sasaki, J., and Lu, C. (2010). Black Garlic (Allium sativum) extracts enhance the immune system. Medicinal and Aromatic Plant Science and Biotechnology, Global Science Books.

Wang, H. Y., Qian, H., and Yao, W. R. (2011). Melanoidin sproduced by the Maillard reaction: Structure and biological activity. Food Chemistry, 128, 573–584.

Wang, X., Lıu, R., Yang, Y., and Zhang, M. (2015). Isolation, Purification and Identification of Antioxidants in an Aqueous Aged Garlic Extract. Food Chem. 187, 37–43.

Yang, P., Song, H., Wang, L., and Jing, H. (2019). Characterization of the key aroma-active compounds in black garlic by sensory-directed flavor analysis. Journal of Agricultural and Food Chemistry, 67(28), 7926-7934.

Yanovski, S. Z., and Yanovski, J. A. (2002). Obesity. N. Engl. J. Med., 346(8), 591e602.

Yoshida, H., Iwata, N., Katsuzaki, H., Naganawa, R., Ishikawa, K., Fukuda, H., Fujino, T., and Suzuki, A. (1998). Antimicrobial activity of a compound isolated from an oil-macerated garlic extract. Bioscien Biotech Biochem, 62, 1014-1017.

Yuan, H., Sun, L., Chen, M., and Wang, J. (2016). The Comparison of the Contents of Sugar, Amadori, and Heyns Compounds in Fresh and Black Garlic. Journal of Food Science, 81(7).

Yuan, H., Sun, L., Chen, M., and Wang, J. (2018). An analysis of the changes on intermediate products during the thermal processing of black garlic. Food Chemistry, 239, 56-61.

Yoo, M., Lee, S., Kim, S., Hwang, J. B., Choe, J., and Shin, D. (2014). Composition of organosulfur compounds from cool-and warm-type garlic (Allium sativum L.) in Korea. Food Science and Biotechnology, 23, 337-344.

Yousuf, S., Ahmad, A., Khan, A., Manzoor, N., and Khan, L. A. (2011). Effect of garlic-derived allyl sulphides on morphogenesis and hydrolytic enzyme secretion in Candida albicans. Medical mycology, 49(4), 444-448.

Zamora, R., and Hidalgo, F. J. (2005). Coordinate Contribution of Lipid Oxidation and Maillard reaction to the Nonenzymatic Food Browning. Critical Reviews in Food Science and Nutrition, 45(1), 49-59.

Zhang, X., Li, N., Lu, X., Liu, P., and Qiao, X. (2016). Effects of temperature on the quality of black garlic. Journal of the Science of Food and Agriculture, 96(7), 2366-2372.

Published

2025-12-09

How to Cite

GÜÇLÜ, S., & HAYOĞLU, I. (2025). Black Garlic: Production Possibilities, Physicochemical Changes During the Production Process and Effects on Health. International Journal of Current Naturalscience and Advanced Phytochemistry, 5(1), 27–41. https://doi.org/10.5281/zenodo.17860847